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Abstract--The unsteady three-dimensional interaction of an initially cylindrical vortex tube with a droplet 
in a uniform stream is investigated through a numerical solution of the Navier-Stokes equations. Particular 
attention is .given to the effect of the vortex on the droplet convective heat transfer. The transient response 
of the droplet Nusselt number is sensitive to the geometrical factors that specify the vortex initial position 
and structure. The time-averaged Nusselt number is approximately the value for the axisymmetric case 
when the vortex center approaches the droplet along the base flow symmetry axis; otherwise, it varies 
monotonically with the vortex initial distance from the base flow symmetry axis, vortex circulation, and 
base flow Reynolds number. Beyond a certain range, the time-averaged Nusselt number reaches an 
asymptotic value. A correlation quantifying average effects of the vortex advection on the droplet heating, 
signifying a self-similar pattern in this unsteady problem, has been produced, and is shown to be also 
applicable to a rigid sphere in a comparable condition. This correlation compliments the existing ones for 
droplet heating in an axisymmetric flow. Based on these findings, it may be speculated that, in a spray 
combustion system, the vortex~lroplet interactions within the Kolmogorov scale can have significant 

effects on the droplet convective heat transfer. © 1997 Elsevier Science Ltd. 

1. INTRODUCTION 

The fluid dynamics and heat transport  for a cold liquid 
droplet in a hot gaseous axisymmetric environment  is 
a well-understood phenomenon,  and there exists 
substantial literature exploring many different aspects 
of such problems [1]. There is, however, a shortage of 
literature explorinl; droplet heating and vaporization 
when the far-field flow embracing the droplet under- 
goes temporal and/or  spatial variations. The existing 
literature has focu:sed on variations due to acoustical 
waves [2-4]. VorLical disturbances have not  been 
widely examined. 

Such a class of problems appears when the droplet 
transport  properties are subject to velocity and tem- 
perature fluctuations in a turbulent  flow, such as might 
occur in a liquid-fl~eled combustor.  In particular, in a 
spray-droplet system, the droplet size is ~100  
microns. In the trtrbulence spectrum for many con- 
t inuous combustors, this length-scale corresponds to 
that of the Kolmogorov scale ; thus, the droplet trans- 
port  phenomena can be subject to turbulent effects 
primarily associated with those of  the Kolmogorov 
scale. Moreover, since turbulence could be rep- 
resented as a manifestation of vortex dynamics [5], it 
is useful to study the effect of  an array of vortices on 
the droplet where the size of the vortices is comparable 
with that of  the droplet. In  the present work, the effect 
of one advecting vortex on a droplet was studied. 

2. FLOW DESCRIPTION, GOVERNING 
EQUATIONS, AND VORTEX CHARACTERISTICS 

The solution for the velocity field in this problem 
has been reported in previous publications [6, 7]. A 
summary of the present approach, including the gov- 
erning equations, the boundary  and initial conditions, 
the computational  approach, and the reasons neces- 
sitating a parameter study, is presented below. 

Consider a cold droplet impulsively injected in a hot 
gaseous environment  with the droplet subsequently 
subjected to an unsteady interaction with an advecting 
vortex tube. The problem is non-linear by nature. 
Fundamenta l  fluid dynamic aspects such as lift, drag, 
and moment  coefficients of the vortex~lroplet  inter- 
action were reported [6, 7], and thus, here, at tention 
is given to recent findings on variations in the droplet 
heat transfer. Constant  properties are assumed in both 
the gas and the liquid domain, and the droplet experi- 
ences no vaporization. The deceleration of the droplet 
due to the drag force is not  considered. 

Since the goal is to study the flow interaction with 
a liquid droplet, the governing equations for both the 
gas and the liquid phase are solved. These are the 
Navier-Stokes and thermal energy equations in both 
phases; the continuity equation is satisfied through 
pressure correction. The equations and boundary  con- 
ditions are non-dimensionalized using the droplet 
radius a'  as the characteristic length, the undisturbed 
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NOMENCLATURE 

P 
Pr 
q" 

r,O, dp 
Re 

a • dimensional droplet radius 
(characteristic length) 

d vortex offset distance from the base 
flow symmetry axis (normalized 
by a') 

N1, N2, Ns number of grid points in 
(4, u, ~) 

Nu Nusselt number 
pressure 
Prandtl number 
heat flux 

spherical coordinates 
base flow Reynolds number (based on 
droplet diameter) 

t time (normalized by a'/U'~) 
T temperature 
u, v, w flow velocities in (x,y, z) directions 

(normalized by U~) 
U~o dimensional free-stream velocity 

(characteristic velocity) 
Vmax maximum tangential velocity of vortex 

tube (normalized by U~) 
V velocity vector 

x, y, z Cartesian coordinates. 

Greek symbols 
F vortex tube circulation 
(4, t/, ~) computational coordinates 
a radius of vortex tube (normalized by 

a') 

v' kinematic viscosity of the gas phase 
z shear stress 
~, stream function. 

Superscript 
• dimensional quantity. 

Subscripts 
0 initial quantity 
ax quantity in the corresponding 

axisymmetric flow (no vortex) 
g quantity in the gas phase 
1 quantity in the liquid phase 
s droplet surface (gas-liquid interface) 
v vortex quantity. 

free stream velocity U~o as the characteristic velocity, 
and the ambient gas temperature Tg as the charac- 
teristic temperature. The governing equations are : 

Gas phase 

V-V~ = 0  

Liquid phase 

(1) 

DVg 
- V p g +  R ~ V  2 Vg (2) D t  = 

OTg 2 V2Tg (3) 
Dt Reg Prg 

v . v ,  = o (4) 

DV1 
= --Vpl+ ~el V2 Vl (5) 

Dt 

DTI 2 V2 T,. (6) 
Dt Rel Pr~ 

These governing equations are transformed to the 
coordinates (4, ~/, ¢) (Fig. 1). ~ is the radial, q is 
the angular, and ¢ is the azimuthal direction. The 
numerical integration of the equations is performed 
using a computational cubic mesh with equal spacing 
(64 = 6r/= 6ff = 1). 

2.1. Gas-liquid interface conditions 
The conditions at the interface are based on the 

principle of continuity of shear stresses (the dis- 
continuity in shear stress across the surface due to 

surface tension gradient has been shown to be neg- 
ligible in its impact on droplet heating), zero normal 
velocity, continuity of tangential velocities, continuity 
of the heat flux, and continuity of temperature. Since 
the interface is always spherical (under the assumption 
of small Weber number), these conditions are con- 
veniently cast in terms of spherical coordinates (r, 0, 
q~) with the origin at the center of the droplet. This 
allows the interface conditions to be applied at a con- 
stant value of the radius ; the axisymmetric base case 
is also more easily expressed. The (4, r/, () coordinates 
have the same orientation as the spherical coordinates 
(r, 0, q~), but obey an imposed stretching, allowing a 
relatively denser grid concentration near the gas- 
liquid interface (droplet surface) : 

~'l,r0,s ~ ~g,r0,s 

"~l,r~b,s ~ ~g,rq~,s 

v, .0 .s  = vg, o.s 

V,,,~,s = V~ , , , s  

r,,s = r~.s 

qi',~ = q~,,~ 

where ZrO,s and z,,,s are, respectively, the shear stresses 
on a positive r-plane in the positive 0- and q~-directions 
and q" is the heat flux from the hot ambient gas into 
the cold liquid droplet. The interface condition for 
pressure is obtained from the momentum equation; 
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X ~ Z 

Y 
Fig. 1. Flow geometry and coordinates. 
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note that, for a spherical droplet, the pressure gradient 
is continuous across the interface. 

2.2. Gas-phase boundary conditions 
(NI, N2, N3) and (N~j, N2, N3) are the number of 

grid points in the gas and liquid domain, respectively, 
in (4, q, 0 coordinates. 4 at Nil and N~ are the droplet 
surface and the gas far-field, respectively. The imposed 
far-field pressure, gas velocities in the (x, y, z) direc- 
tions and gas temperature are 

p = 0  u = v = 0  w =  1 T = I  a t ~ = N ~ a n d  

N:mid ~ r/ ~< N2 (upstream) 

Ou Ov Ow O T 
p=O 0 4 - 0 ~  ~ - 0 ¢ - 0  at 4 = N~ and 

1 ~< q < N2mid (downstream). 

The imposed initial conditions inside the liquid 
droplet are a quiescent liquid phase and a uniform 
temperature T~o < Tg0. 

2.3. Symmetry conditions 
Since the cylindrical vortex tube advects with its 

axis of symmetry parallel to the y-axis, symmetry is 
maintained such that a solution is found for half the 
spherical domain rather than the entire domain, thus 
reducing the computational time : 

t3p t3u Ow O T 
- 0  v = 0  a t ~ = l , N 3 .  

2.4. Numerical sohltion 
A three-dimensional implicit finite-difference algo- 

rithm solves the set of discretized partial differential 
equations. The control volume formulation is used to 
develop the finite-difference equations. The method of 
solution employs an alternating-direction-predictor- 
corrector (ADPC) scheme to solve the time-dependent 
equations. 

The overall solution procedure is based on a cyclic 
series of estimate-and-correct operations. At each 
time-step, the solution in the gas phase is noticed first; 
the velocity components are first calculated from the 
momentum equations using the ADPC method, where 
the pressure field at the previous time-step is 
employed. This estimate improves as the overall iter- 
ation continues. The pressure is calculated from the 
pressure correction equation using the successive over- 
relaxation method. The new estimates of  pressure and 
velocities are then obtained. These known quantities 
are used in the energy equation to solve for the gas- 
phase temperature field. 

The interface conditions are next used to solve for 
the liquid-phase boundary values, followed by the 
sequential, iterative solution of the liquid-phase equa- 
tions of motion and thermal energy until convergence 
is achieved for each time-step of the calculation. 

At each time-step, the drag, lift, and moment 
coefficients and Nusselt number are evaluated. The 
entire procedure is then repeated for the next time- 
step. Further details may be found in previous pub- 
lications of this research group [6-8]. High-precision 
computations for benchmarking purposes were 
executed on the Cray, taking an average runtime of 
about 10 cpu h. However, by using a normalization 
procedure (see end of  Section 2.7), such long com- 
putations were avoided, and, using less mesh points, 
most executions were pursued on a Dec-alpha, Con- 
vex 240 or 3840, taking average runtimes of about 1.2, 
1 or 0.9 cpu h, respectively. 

2.5. The vortex tube features 
The vortex is introduced upstream of the droplet, 

advects with the superimposed uniform flow, and has 
a relatively simple configuration--it  is an initially cyl- 
indrical tube whose axis of symmetry is initially nor- 
mal to the uniform flow and parallel to the y-axis. The 
vortex tube has a small central core ; within this core, 
the initial velocity distribution in the vortex tube is 
that of  solid body rotation reaching an imposed Vmax 
at radius cr. Vmax and tr are specified at time t = 0. 
Outside this inner core, the vortex induces a velocity 
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field of a potential vortex; thus, the velocity induced 
by the vortex vanishes as r ~ oo. This two-dimen- 
sional vortical tube is known as a Rankine vortex [9], 
and has the following stream function [10] : 

F0 
~v(X, z, t = 0) = - ~ l n  [(X--X0) 2 + (Z--Z0)  2 -~- 0"0 2] 

(7) 

where F0 is the initial non-dimensional vortex cir- 
culation at radius 0"o. F0 is positive when the vortex 
tube has a counterclockwise rotation, and x0 and z0 
denote the initial location of the center of the vortex 
tube. Note that the initial vortex tube circulation at 
radius 0"0 is F0 = 2g0"0Vm,x0. After the initial time, the 
advection, diffusion and distortion (strain) on the vor- 
tex is determined through the solution of the Navier-  
Stokes equations. More fundamental information on 
the vortex tube, such as temporal changes in its tan- 
gential velocity and vorticity, are given in Ref. [6]. 

2.6. Flow interaction 
The droplet is placed in a uniform flow (here also 

called the 'base flow'), and thus gradually develops a 
standing vortex ring in its aft position. Note that, in 
the absence of the vortex, the flow remains axi- 
symmetric with respect to the z-axis (Fig. 1). The 
vortex is introduced 10 droplet radii upstream of the 
droplet and advects, initially, with the superimposed 
uniform free-stream flow and, later, with the local 
velocity ; it takes about 10 residence time units for the 
vortex to arrive at the vicinity of the droplet ; there, 
vortex stretching is observed in the cross-flow direc- 
tion, and thus a full unsteady and three-dimensional 
interaction occurs between the vortex and the droplet. 
The dynamic interaction is the strongest when the 
vortex is initially introduced 'on'  the base flow sym- 
metry axis of Fig. 1; here, a 'head-on' collision 
between the droplet and the vortex is observed, result- 
ing in a slow-down of the vortex advection, and also 
vortex stretching in the cross-flow direction. When the 
vortex advects 'off" the axis, the dynamic interaction 
between the two is relatively weaker and the vortex 
therefore advects nearly steadily with the base flow. It 
takes nearly 25 residence time units for the vortex to 
arrive at the droplet, interact with it, and then travel 
sufficiently far downstream to have insignificant 
influence. Many details of the interactions have been 
reported in Ref. [6]. 

2.7. The droplet convective heat transfer 
The droplet convective heat transfer, represented 

by its Nusselt number, is computed through 
Nu(t) = 2a'h'/k'g (with h' and k~ being the convective 
heat transfer coefficient and gas conductivity), which, 
after standard simplification and non-dimen- 
sionalization, yields 

~ fo ~_~__r OTg(t) sinOdOd¢ 

Nu(t) = ~(1 -- T~) 

where T~ is the droplet temperature at the interface 
averaged over the surface. Since the cold droplet is 
injected impulsively in the hot ambient gas, it initially 
experiences a stronger heat transfer. In the base axi- 
symmetric flow, it takes nearly five resident time units 
for the droplet Nusselt number to reach a steady value. 
However, when the vortex is superimposed on the 
base flow, the Nusselt number fluctuates continuously 
due to the advection of the vortex, and cannot attain 
a steady value. It is therefore more convenient to 
regard overall estimates by considering time-averaged 
and root-mean-squared values according to 

and 

- -  1 ~,2 
Nu = - Nu(t) dt 

t2-t~ , 
(8) 

Nu~m~ = ~/i Nu( t) ---fful 2 

= / 1  1'2 [Nu(t)--Nuul:dt. (9) 
X/t2--tl Jr, 

It is advantageous to normalize Nu and Nu~ms using 
their corresponding values in an axisymmetric flow, 
Nu.x and Nu,~s.. ; there is a substantial computational 
advantage to this normalization--while different 
values are obtained for Nu depending on the number 
of computational mesh points (ordinarily, 41 in each 
direction), the same values of Nu/Nuax result in only 
half as many mesh points (21 in each direction) since 
both the numerator and the denominator change by 
the same amount, about 10%, due to a reduction in 
the number of mesh points. Therefore, Nu/Nu,x and 
Nu~mJNu~m~,~ are considered in the present results. In 
the above estimates, t~ = 2 and t2 = 25, i.e. the data 
for t E (0,2) are disregarded; this is the time needed 
for the initial computational fluctuations in the pres- 
sure drag to vanish. To minimize the influence of 
this initial data exclusion on the final outcome, the 
normalizing values Nuax and Nu~ms~ are also estimated 
with this criterion imposed. Computed Nu/Nuax are 
more invariant to this initial data exclusion than 
Nu~ms/Nu . . . .  are. (Sample comparisons show Nu/Nu,x 
and Nu~mJNurms~ values computed with and without 
this initial data exclusion vary by nearly or less than 
0.05% and 8%, respectively.) 

3. RESULTS 

The velocity and thermal boundary layers, both in 
the gas phase and within the droplet interior, could 
be affected due to the advection of the vortex near the 
droplet. The vortex advection near the droplet breaks 
down the symmetry. In addition, the vortex could 
drastically change the structure of the recirculation 
zone in the droplet near wake, and cause its otherwise 
confined pockets of vorticity to be ejected into the 
free stream and to advect with the outer stream [6]. 
Further, due to the coupling between the velocity and 
temperature fields, all the developments in the velocity 
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boundary layer induced by the vortex advection have 
their correspondirLg effect on the thermal boundary 
layer as well. The substantial density ratio between 
the gas and liquid phases nevertheless makes the vor- 
tex effect more pronounced in the gas phase. 

There are four parameters that characterize the 
quantitative significance of the vortex-droplet inter- 
action: the vortex initial core size (tro), its initial 
maximum tangential velocity (Vmax0), the offset dis- 
tance between the vortex initial position and the base 
flow symmetry axis (do), and the base flow Reynolds 
number (Re). The initial position of the vortex center 
is placed 10 droplet radii upstream of the droplet, 
either 'on'  the base flow symmetry axis (do = 0) or 
slightly 'off' it (do = _+ 1, _+2 . . . .  ). A positive or nega- 
tive do means an offset distance from the z-axis in the 
x, z symmetry phme in the positive or negative x- 
direction, respectively ; this is shown in Fig. 1 with do 
non-dimensionalized by the droplet radius. 

An initial radiuLs (tr0) is specified for the vortex 
which defines the vortex core within which vorticity is 
uniformly distributed ; the strength of this vorticity is 
chosen so that the maximum velocity at the core of 
the vortex (Vma~0) r,spresents an acceptable fluctuation 
from the uniform flow. This fluctuation is taken to be 
less than the free-stream velocity. For example, to 
represent a 20% fluctuation in the base flow, 
Vmax0 ~--- 0.2 is chosen. Outside the inner core, the vel- 
ocity pattern is that of a potential vortex. Thus, the 
vortex structure and strength are initially fully char- 
acterized by the two parameters tr0 and Vmax0, non- 
dimensionalized by the droplet radius and the strength 
of the uniform stream, respectively. Figure 1 shows a 
typical vortex local:ion upstream of the droplet. Since, 
in the absence of the vortex, the base flow remains 
axisymmetric at al]i times, a change in the orientation 
of the vortex circulation only rotates the spatial orien- 
tation of the events ; therefore, the counterclockwise 
orientation for the vortex is arbitrarily chosen in all 
of the simulations. A counterclockwise rotation with 
a positive offset distance is the mirror image of a 
clockwise rotation with a negative offset distance so 
that clockwise rotation need not be considered. 

In order to investigate the droplet heat transfer 
influenced by the flow fluctuations due to the passage 
of the vortex, a parameter study is insured to deter- 
mine the role of each of the four above characteristics 
on the droplet Nusselt number. The considered ranges 
are d0 = 0, +__1, -t-2, -4-3, -4-4, __5; or0 = 0.25, 0.5, 1, 
2, 3, 4; Vmax0 = 0.1, 0.2, 0.3, 0.4; and 20 ~< Re ~ 100. 

3.1. The effect of  the offset distance 
Figure 2(a) and (b) shows the temporal changes in 

the Nusselt number as a function of the vortex center 
initial position (do) upstream of the droplet. The drop- 
let Nusselt number in an axisymmetric flow (i.e. hav- 
ing the same Reynolds number and without a vortex) 
is also shown for comparison. The substantial differ- 
ence in the temporal response is apparent. The droplet 
Nusselt number increases for do > 0, and decreases for 

8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  i . . . . . . . . . . . . . . . . . . .  

7.9 

7.7 

7.5 

7.4 

7. 10 15 20 25 

Residence time 

! 

10 1§ 20 25 

l l ~ f i d c n e e  t i m e  

Fig. 2. Influence of the vortex initial offset distance (do) on 
Nu(t) : (a) vortex advecting with do in - 5 ~< do ~< 5 (tr0 = 1, 

Re = 100, VmaxO = 0.2); (b) same, Vmax0 = 0.4. 

do < 0; a vortex with a counterclockwise circulation, 
when positioned at an initial do > 0, increases the rela- 
tive gas-droplet velocity in the vicinity of the droplet, 
and thus increases its convective heat transfer; by 
contrast, one with do < 0 decreases the convective 
heating of the droplet. 

An interesting case is that of d0 = 0, where the drop- 
let Nusselt number goes through a pattern of increase- 
decrease-increase, depending on the location of the 
advecting vortex [Fig. 2(a) and (b)]. When the vortex 
is upstream of the droplet, its counterclockwise cir- 
culation increases the convective effect, and thereby 
the droplet Nusselt number; very near the droplet, 
viscous interactions force it to pass 'underneath' the 
droplet [6] ('underneath' means in the lower half of 
the x, z symmetry plane in Fig. 1). In the droplet 
vicinity, the vortex reduces the convective effect of the 
base flow, and thus the droplet Nusselt number. When 
downstream of the droplet, the vortex once again 
strengthens the convective effect of the base flow, and 
so increases the droplet Nusselt number. 

Nevertheless, when the vortex is initially positioned 
on the base flow symmetry axis (do = 0), and therefore 
an increase in Nusselt number is followed by a 
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Fig. 3. Influence of the vortex initial tangential velocity ( V m a x 0 )  

on Nu(t): (a) vortex advecting with do = 0 (Re = 100, 
~o = l) ; (b) same, do = 1. 
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Fig. 4. Effect of the vortex initial radius (~0) on Nu(t) : (a) 
vortex advecting with do = 0 (Re = 100, Vmax0 = 0.2); (b) 

same, do = 1. 

m 

decrease, the summed variations yielding Nu are 
small ; by contrast, the non-trivial changes in Nu occur 
when do ~ 0. 

3.2. The effect of the vortex tangential velocity 
Figure 3(a) and (b) shows the influence of  V m a x 0  on 

the temporal  Nusselt  number when the vortex advects 
on [do = 0, Fig. 3(a)] or off(d0 # 0, Fig. 3(b)] the base 
flow symmetry axis ; the corresponding pattern in an 
axisymmetric flow with the same Reynolds number 
has been also shown for comparison. Since Fv oc v . . . .  

vortices with larger Vmax induce a stronger secondary 
flow in the uniform stream ; thus, the droplet Nusselt 
number shows sensitivity to the vortex Vmax0- 

However,  changes in Nu due to Vmax0 appear to be 
small for as long as do = 0 [see Fig. 3(a), which indi- 
cates that Nu(t) fluctuates around the axisymmetric 
curve for all values of  Vm~x0 ]. This is the same as the 
previous observation that, as long as do = 0, the vortex 
effect on Nu(t) is sometimes augmenting and some- 
times decreasing, yielding trivial changes from the axi- 
symmetric value in Nu. This was also seen when study- 
in g the effect of  do. The observed negligible changes in 
Nu should not be interpreted as the insensitivity of  the 

droplet heat transfer to the passage of  the vortex or 
the vortex Vm~x0 ; simply stated, at do = 0, cancellations 
are found in the averaging process. These can- 
cellations are not  encountered in computing Nu when 
do # 0, such as the cases shown in Fig. 3(b) ; this more 
interesting effect of  vortex tangential velocity that 
occurs when do ¢ 0 will be discussed later. 

Data  indicate that, overall, Nu/Nuax--1 follows a 
linear dependence on Vm~xo. 

3.3. The effect of the vortex radius 
Figure 4(a) and (b) shows the influence of  a 0 on the 

temporal  Nusselt  number  when the vortex advects on 
[do = 0, Fig. 4(a)] or  off [do # 0, Fig. 4(b)] the base 
flow symmetry axis ; the corresponding pattern in an 
axisymmetric flow with the same Reynolds number 
has been also shown for comparison. 

Analogous to the previous observation, since 
Fv oc a, vortices with larger radii introduce stronger 
secondary flow in an otherwise uniform stream near 
the droplet ;  thus, the droplet  Nusselt number appears 
sensitive to changes in the vortex radius. When the 
vortex advects on the base flow symmetry axis 
(do = 0), in spite of  the clear temporal  sensitivity, the 
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time-averaged values of the Nusselt number compared 
to those in an axisymmetric flow (having the same 
Reynolds number) change by only 0.5% when 
Cmax0 = 0.2, and by about 1% when Vm~0 = 0.4, SO that 
Nu/Nua~ = 1 _ 1%. Similar to the case in the previous 
section, the trivial net change in the computed Nu in 
such cases is due ~Lo a combined effect of do = 0 in 
the simulation and the nature of time-averaging of 
equation (8) ; it should not be interpreted as the insen- 
sitivity of the droplet convective heat transfer to the 
passage of the vortex or the vortex a0 [Fig. 4(a)]. 

Thus, when studying the effect of ~r o on Nu, larger 
values result whey. the vortex advects off the base 
flow symmetry axis [Fig. 4(b)]. Data indicate that 
Nu/Nuax- l follow~; a linear dependence on ¢r0. 

Figure 4(a) shows that, at early times, smaller radii 
yield larger Nu(t), while, at later times, the results are 
reversed. This is bec, ause a vortex introduced upstream 
of the droplet with do = 0 or small do/ao has a 'head- 
on' collision with the droplet, and travels around its 
periphery before it advects downstream the droplet. 
If the vortex initial radius is small compared to the 
droplet radius, then, during the impact, the droplet is 
mostly outside the vortex inner core, and, therefore, 
the droplet heat transfer is augmented due to the vor- 
tex circulation ; if the vortex initial radius is large, then 
the droplet is mostly within the vortex inner core and 
its solid-body-rotation velocity field ; thus, the droplet 
near-field velocity is less strongly modified, resulting 
in a reduction in N~'~(t). 

3.4. The effect of the flow Reynolds number 
Figure 5(a) and (b) shows the influence of the base 

flow Reynolds number on the temporal Nusselt num- 
ber when the vortex advects on [do = 0, Fig. 5(a)] or 
off [do 4: 0, Fig. 5(b)] the base flow symmetry axis; 
the corresponding pattern in an axisymmetric flow 
with the same Reyvolds number has been also shown 
for comparison. 

The higher the Reynolds number, the stronger the 
heat transfer fluctuations induced by the vortex, even 
though the strength of the vortex remains the same ; 
thus, for example, a 30% fluctuations (i.e. Vr,,~0 = 0.3) 
in a uniform flow with Re = 100 has a stronger effect 
on the droplet Nusselt number than the same fluc- 
tuation does in a flow with Re = 20. The reason is 
simple : flows with lower Reynolds numbers are rela- 
tively more viscosiity-dominated, and thus vortex- 
induced inertial changes are relatively more damped. 

Analogous to the previous observations, when 
do = 0 [Fig. 5(a)], there is barely a change in the time- 
averaged values oft]he Nusselt number due to a change 
in the base flow Reynolds number; Nu/Nu,~-- 1 chan- 
ges over the range of Reynolds number by only 0.1% 
when Vm,x0 = 0.2, and by 0.5% when V~x0 = 0.4. 
Again, this is mostly the consequence of the choice 
do = 0 and the nature of time-averaging in equation 
(8). Naturally, when do # 0 [Fig. 5(b)], the computed 
changes in Nu/Nuax-- 1 are stronger ; such effects are 
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Fig. 5. Effect of the flow Reynolds number on Nu(t) : (a) 
vortex advecting with do = 0 (Vm,x0 = 0.2, 0.4, ~r 0 = 1); (b) 

vortex advecting with do = +2 (Vmax0 = 0.3, ~r0 = 3). 

seen in Fig. 5(b) and will be discussed in the next 
section. 

Data indicate that Nu/Nua~-1 ~ Re°'4; note that 
Nu,x ~ Re a, where the exponent ranges from 0.427 
to 0.573 (see the Appendix), so that approximately 
Nu-Nu,x  ~ Re. This implies that the time-averaged 
perturbations in Nusselt number have a stronger 
dependence on the Reynolds number than the Nusselt 
number itself does. 

3.5. Global self-similarity 
In the absence of the vortex, Nu and Nuax are ident- 

ical, so that one may approximate the droplet Nusselt 
number using the correlation fi'om Ref. [11] for a rigid 
sphere in an axisymmetric flow [4], or one may use 
the new correlation for axisymmetric flow past liquid 
spheres presented in the Appendix. With the vortex 
present in the domain, however, the axisymmetric flow 
correlation loses its applicability, and a new cor- 
relation accounting for the effect of the advecting vor- 
tex on the droplet heat transfer is to be used. 

Such a correlation that accounts for the influence 
of the advecting vortex has been produced; all the 
data collapse into the functional form 
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for a solid sphere. 

Nu F0 040 [ do \ 
Nuax 1 + 0 . 0 1 9 ~ R e  tanh ~0.50 a07796 ) 

(lo) 

within the range of the parameter study: 
20<~Re<<.lO0; 0.25~<Cro~<4; 0.1 ~<v~,~o~<0.4; 
- 5 ~< do ~< 5. This covers a range of vortex circulation 
varying by nearly two order-of-magnitudes : Fo ~(0.16, 
10.05). All the simulations are for a cold n-octane 
droplet in hot air, and so Pr~ = 8.527, and Pr~ -- 0.739. 
The correlation coefficient for the above fit is 
r 0 . 9 5 6 ; ( r -  1-- " 2 0.5 Nu/ ---~ [~'~i= 1 ( Y  . . . . .  li/Yfiti--1) ] ; Y :  

Nu~x). A plot of this correlation and its comparision 
with the present data is shown in Fig. 6. For  
Id0/a° 61 ~ 5, Nu/Nuax-1 approaches an asymptote; 
here, profiles of Nu(t) are still at least modestly differ- 
ent, apparent in Fig. 2. For  do = 0, the data yield 
Nu/Nuax- 1 ~ 0.001, which is negligible in practical 
terms. 

The correlation of equation (10) indicates that a 
change in the sign of either do or circulation produces 
a change in the sign of the deviation of the averaged 
Nusselt number from the averaged base axisymmetric 
value. Note that this correlation holds for bounded 
values of the fluctuating velocity; in particular, the 
vortex is not strong enough to reverse the free-stream 
flow direction (v'~,xo/U'~ < 1). 

While the droplet internal circulation is instru- 
mental in its internal temperature distribution, it is, 
however, well known that, due to the large density 
ratio between the liquid and the gas phase, the internal 
circulation is nevertheless weak, and thus the interface 
velocity remains negligible compared to the free- 
stream gas velocity. Therefore, the structure of the 
viscous and thermal layers on the gas side of the inter- 
face are not substantially changed. Only minor chan- 
ges in Nusselt number for the gas-phase boundary 
layer result. (However, internal circulation cannot be 
neglected because it will still have a significant effect 
on the interface temperature, and, therefore, on the 
heat transfer through the gas-phase boundary layer.) 
This allows approximating the Nusselt number for a 
cold droplet in a hot gas from correlations or simu- 
lations sought for a rigid sphere, and vice versa• It has 

been further verified in this investigation that simu- 
lations for a solid sphere in the presence of an advect- 
ing vortex yielded Nu values close to those for a liquid 
sphere, fitting equation (10), and thus confirming that 
this correlation could be used for a solid sphere in 
comparable condition, as well. This is also shown in 
Fig. 6. 

• 0 6  Depending on the asymptotic value ofdo/ao , equa- 
tion (10) may be recast into two simpler forms. For  
small values of d0/o "06, tanh is approximately linear 
in its argument (tanh x ~ x as x ~ 0) ; rearranging 
variables and using Nuax ~ Re °573 yields 

~ - -  Nu~ ~ + a°4 Re-°°27 Re (11) 
- -  0 Vao' 

Conversely, for large do/a°o 6 (and using tanh x ~ 1 
as x -o ~ ) ,  equation (10) may be again rearranged to 
give 

Nu-Nuax ~ +Re  -°°27 Rev (12) 
a 0 

where Revd and Rev~ are Reynolds numbers defined 
solely ba"sed on ° the vortex characteristics : 
Revd = v'~,xod'o/v' and Revo =Vmaxoa'o/V', with the 
characteristic length in the °former being the vortex 
offset distance from the base flow symmetry axis and 
in the latter the vortex core size. The + sign in equa- 
tions (11) and (12) applies for positive do and counter- 
clockwise vortex rotation, or for negative do and clock- 
wise rotation. Otherwise, a negative sign appears. 

A few observations are made here. For  small 
do/a °6 [equation (t 1)], the perturbations in the Nus- 
selt number induced by the vortex explicitly depend 
on the vortex core size a0; a plausible explanation is 
that in this range the vortex embraces the droplet 
partly or fully during the interaction, and thus its core 
size is of significance. By contrast, for large do/a °6 
[equation (12)], the droplet remains totally outside the 
vortex core, and thus it is the vortex-induced inertia 
embedded in its circulation F~0 ~ V~naxOa~ or equi- 
valently in Rev,o that matters in the perturbations. It 

is noteworthy that for both asymptotes the primary 
dependence of perturbations appears to be on Rev 
and not Re; i.e. they appear to have only a weak 
dependence on Re. 
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All of  the efforts, however, to produce a simple 
correlation for the rms values of the Nusselt number,  
Nu~,s, such as one qualitatively similar to the one 
above for Nu, remained fruitless. Instead, some com- 
ments and insight on the dependence of N u ~  on all 
of  the four parameters involved are presented. 

Figure 7(a) shows Nu~ms changing as a function 
of do; it is obviou:; that Nu~ms peaks at Idol -- 2 (an 
observation nearly identical to that made from Nu 
values) ; however, iit is not  symmetric with respect to 
do = 0 (unlike Nu values), but  demonstrates relatively 
larger values for do < 0 ; this occurs since, for do < 0, 
Nu(t) values exhibit a relatively larger initial drop 
[Fig. 2(a) and (b)], yielding larger Nu~ms values. [Sam- 
ple calculations, with data within te(0, t,) excluded 
with t~ >> 2 (see Section 2), confirmed this: Nu~ms 
values appeared symmetric with respect to do = 0.] 

Figure 7(b-l)  and (b-2) shows changes in Nu~n~ due 

to tr 0. In contrast to observations made from the time- 
averaged values of  Nusselt number,  and owing to 
the nature of computing an rms value in which the 
variations are squared and so no cancellation takes 
place [equation (9)], Nu~ms values with do = 0 could be 
larger than those with do > 0 [Fig. 7(b-2)]. 

The influence of the Reynolds number  on the rms 
values is shown in Fig. 7(c-1) and (c-2) ; they exhibit 
a non-linear dependence on Re, irrespective of the 
choice of the initial value for the remaining three par- 
ameters (ao, do, Vm,x0)- 

4. CONCLUSIONS 

The unsteady interaction between a cylindrical vor- 
tex tube and a liquid droplet in a uniform flow has 
been investigated by pursuing a study of each of  the 
four parameters affecting the strength of this inter- 
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action and modifying the droplet Nusselt number. 
Particular attention has been paid to the effect of these 
parameters on the transient and time-averaged values 
of the droplet Nusselt number. A correlation quan- 
tifying the effect of the advecting vortex on the droplet 
heating has been produced, signifying a self-similar 
behavior for the average effect in this unsteady prob- 
lem. The reported correlation compliments the exist- 
ing ones for droplet heating in axisymmetric flows 
that occur in the absence of an advecting vortex [11]. 
It may also be used for a rigid sphere in comparable 
conditions in the presence of an advecting vortex. 

When the vortex advects towards and then past the 
droplet starting upstream 'on'  the symmetry axis of 
the base flow, the droplet Nusselt number first 
increases and then decreases ; thus, the time-averaged 
Nusselt number is nearly equivalent to that in an 
axisymmetric flow, even when the vortex simulates up 
to 40% fluctuation in the base flow. Conversely, when 
the vortex advects 'off' the base flow symmetry axis, 
the time-averaged Nusselt number is changed due to 
the vortex-induced fluctuations. Whether this has an 
augmenting or inhibiting effect on the droplet heating 
(compared to one in an axisymmetric flow) depends 
on two factors" the vortex circulation orientation and 
also whether it advects 'above' or 'below' the sym- 
metry axis in the plane of symmetry (Fig. 1). The time- 
averaged Nusselt number is linearly proportional to 
the vortex circulation; also, it follows ~ tanh  
(0.5d0/tr°'6), and thus has an exponential dependence 
on the vortex initial position do. Furthermore, due to 

this exponential dependence, the influence of the vor- 
tex on the time-averaged Nusselt number reaches an 
asymptote for relatively larger do. The computations 
here are limited to ]d0[ ~< 5. Naturally, one expects that 
when the vortex advects 'very' far from the droplet, 
it will have no or a negligible effect on the droplet 
heating. 

The hyperbolic tangent correlation also yields two 
interesting limits. For small do/a °6 and large Re, 
N u -  Nu~x is linearly proportional to a Reynolds num- 
ber based on do and the vortex maximum tangential 
velocity, as well as having a dependence on the vortex 
core size [equation (11)]. For  large do/a °6 and large 
Re, Nu--Nuax is linearly proportional to a Reynolds 
number based on the vortex core size and its maximum 
tangential velocity, as shown in equation (12). More- 
over, and interestingly enough, in both limits it is the 
advecting vortex that appears to influence the Nusselt 
number perturbations and not the base flow, since 
there appears to exist only a weak dependence on the 
base flow Reynolds number. 

It is emphasized that, in parallel studies invest- 
igating changes in fluid dynamic properties of solid 
spheres (lift and moment coefficients) [6], a similar 
dependence of fluctuations in fluid dynamic properties 
on vortex parameters has been observed. Specifically, 
the induced fluctuations appeared to depend on the 
vortex circulation in a similar fashion. A marked 
dependence of the Nusselt number fluctuations on 
the fluid dynamics variations explains the similarity 
between the conclusions of  the two studies. 
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In the absence of  vort ical  structures,  
Nu,x ~ 0(Re°573), thus  p rompt ing  one to ant ic ipate  
its per turba t ions ,  N u - N u ~ x  ~ 0(Re°573), as well. 

However,  this is not the case;  instead,  the induced 
per tu rba t ions  follow N u -  Nuax ~ 0(Re°973) .  

These calculatio:as have not  considered the effect of  
the deflection of  the droplet  due to the f luctuat ing 
velocity. N or  has  the combined  effects of  an  array of  
vort ical  s t ructures been considered. These impor t an t  
issues should be addressed in the future. 

Based on the present  findings, it is may be specu- 
lated that ,  in a spray combus t ion  system, the vo r t ex -  
droplet  in teract ions  within the K o l m o g o r o v  scale can  
have significant effects on  the droplet  convective heat  
transfer.  
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APPENDIX 

In an axisymmetric flow, and following the assumption 
that the effect of the droplet internal circulation on the drop- 
let heating is small, one may use the Nusselt number cor- 
relation from Ref. [11] for a rigid sphere : 

Nu = 1 +(1 +PrRe) I/3 Re °'°77 Re <<. 400. (A1) 

This correlation has been recommended for spray com- 
bustion computations [4]. For particles having Re >1 10 in 
media with Pr ~ 1, this suggests Nu-- 1 ~ R e  °41°. 

This suggested correlation has been modified by account- 
ing for the droplet internal circulation. The calculations 
(non-vaporizing n-octane droplet in air, 10 ~< Re <~ 100)sug- 
gest a fit of the form 

N u -  1 = 0.927Re °427 10 ~< Re ~ 100. (A2) 

The authors note, however, that this form is somewhat 
clumsy since one should expect Nu = 2 at Re = 0. A pre- 
ferred fit therefore is 

N u - 2  = 0.412Re °'573 10 ~< Re <~ 100. (A3) 

Equations (A2) and (A3) have correlation coefficients of 0.97 
and 0.99, respectively. 

It is suggested that the slight increase in the exponent of 
Re [compared to the exponent 0.40 resulting from equation 
(A1)] is a contribution of the droplet internal circulation. 
That is, the boundary layer and thermal layer thicknesses are 
decreased slightly due to the motion along the interface. 
This results in an increase in heat transfer rate from the hot 
ambient gas to the cold droplet. 

Finally, the accuracy of the above equations is compared. 
Equations (A2) and (A3) were produced with simulations 
using (21,21,21) and (15,21,21) mesh points in (r, 0, ~b) coor- 
dinates in the gas and liquid phases, respectively, and yield 
Nu values nearly identical to those of equations (A1) for 
Re = 10, but about 13% larger near Re = 100. A simulation 
using (41,41,41) and (15,41,41) mesh points in gas and liquid 
phases for Re = 100 produced a value that was still 5% 
above that given by equation (A1). This discrepancy was 
expected since equation (A1) is suggested by Ref. [11] for a 
rigid sphere where the absence of internal circulation yields 
Nu values lower than those of a liquid sphere. 


